DISASTER RISK REDUCTION CONFERENCE. STARFLOOD WORKSHOP, Warsaw 15 Oct. 2015

Prof. Z. W. Kundzewicz

Institute for Agricultural and Forest Environment Polish Academy of Sciences, Poznan, PL and the STAR-FLOOD Team

STAR-FLOOD Project (EU FP7)

(STrengthening And Redesigning European FLOOD risk practices - Towards appropriate and resilient flood risk governance arrangements)

October 2012 - March 2016

UNIVERSITEIT UTRECHT	NL
STICHTING KATHOLIEKE UNIVERSITEIT	NL
UNIVERSITEIT ANTWERPEN	В
KATHOLIEKE UNIVERSITEIT LEUVEN	В
MIDDLESEX UNIVERSITY HIGHER EDUCATION CORPORATION	GB
LULEA TEKNISKA UNIVERSITET	S
INSTITUTE FOR AGRICULTURAL AND FOREST ENVIRONMENT, POLISH ACADEMY OF SCIENCES	PL
UNIVERSITE FRANCOIS RABELAIS DE TOURS	F
GRONTMIJ NEDERLAND / CEPRI	NL/F

Work packages	
WP 1	Problem analyses
WP 2	Assessment Framework for Flood Risk Governance
	Arrangements (FRGAs) & case study protocol
WP 3	Country analysis
WP 4	Country comparison
WP 5	Design-oriented framework for FRGAs &
	Implications for EU policies and directives
WP 6	Scientific integration
WP 7	Knowledge dissemination and networking
WP8	Project management

Countries and case studies

STAR E

The Netherlands

Rijnmond Drechtsteden;

Nijmegen;

Westergouwe/Zuidplaspolder

United Kingdom

London

Hull

Glasgow

Belgium

Antwerp

Geraardsbergen

Ghent

Sweden

Gothenburg

Haparanda

Karlstad

Poland

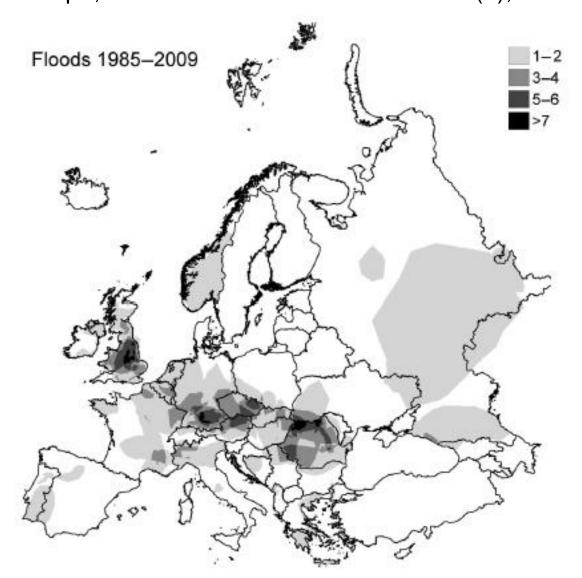
Slubice

Poznan county

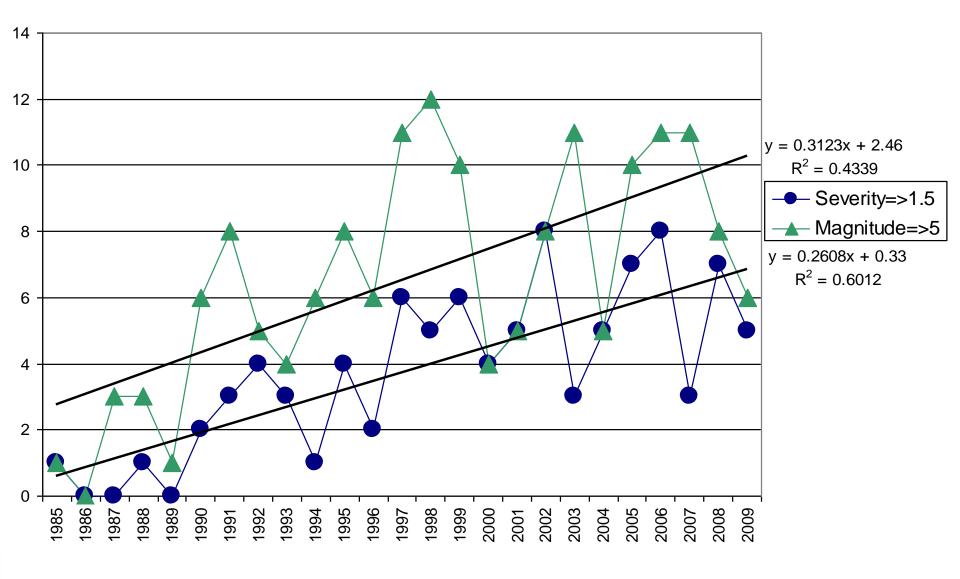
Wroclaw

France

Nice


Nevers

Le Havre



- Background: increasing flood risks due to urbanisation and the effects of climate change
- Hypothesis: urban areas will be more resilient if several Flood Risk Management Strategies are combined and integrated

Source: Kundzewicz, Z.; Pińskwar, I; Brakenridge, R. (2013) Large floods in Europe, 1985-2009. HYDROL. SCI. J. 58(3), 736-736.

Increasing number of large floods in Europe, according to the data in Dartmouth Flood Observatory. Source: Kundzewicz et al. (2014)

Source: Kron (2012)

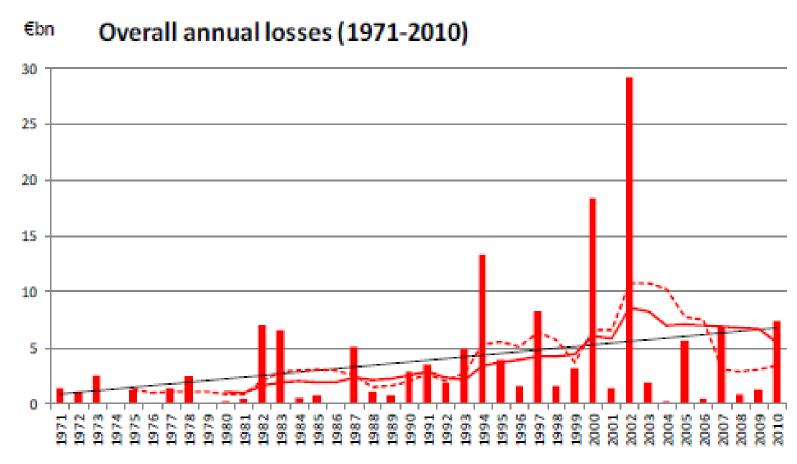
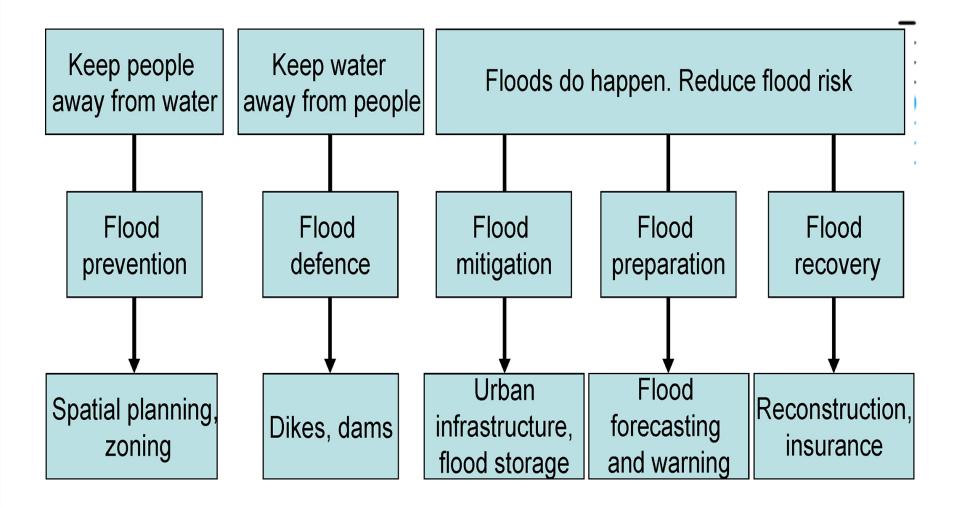



Fig. 2 Overall annual aggregated losses from flood disasters in Europe since 1971 with linear trend (—), and ten-year (—) and five-year (- -) moving averages (in 2010 values).

Flood risk management strategies, after STAR-FLOOD project http://www.starflood.eu/

Research approach: integrating public administration and legal expertise

FRM Strategies are embedded in so-called Flood Risk Governance Arrangements:

- Actors
- Discourses
- Rules
- Resources

Related to all policy domains relevant for Flood Risk Management (water management, spatial planning, disaster management)

Governance challenges for FRM

- The challenges are related to actors, discourses, rules and resources
- More general finding: Flood Risk Governance Arrangements tend to be highly fragmented
- Need for bridging concepts like Integrated Water Resources Management and Climate Proofing to create synergies between actors involved in Flood Risk Governance

FRM Strategies should be appropriate for the context in which they are applied

STARE FLOOD

This depends on (amongst others):

- Flood experiences
- Competent authorities
- Available resources
- Degree and ways in which integration between water management and spatial planning is taking place
- If and how stakeholder involvement is done
- Existing norms and goals
- Historical discourses in Flood Risk Management
- Existing FRM Strategies (path dependency)

To what extent do we witness a diversification of Flood Risk Management Strategies?

- Limited in terms of actual application of a diversified set of strategies (but some broadening observed e.g. Room for the River in The Netherlands, more natural flood management in Belgium);
- More pronounced in terms of **shifts in discourses** (differs per country, e.g. strong prevention discourse in France).

Transferable recommendations on:

=> implementation of FRM Strategies;

=> bridging between domains (e.g. water management and spatial planning; water management and disaster management);

=> improvements of European policies and legal frameworks

Final remarks

- STAR-FLOOD countries are attempting to diversify Flood Risk
 Management Strategies away from flood defence in most cases,
 there is mainly a discursive shift (which may be a precursor of a
 more profound shift);
- Countries differ in how they see the Floods Directive (e.g. Poland vs. The Netherlands)
- **Existing legal frameworks** can be bottlenecks (Poland) but also strenghts (prevention instruments in Belgium)
- Recurring findings:
 - Bridging mechanisms exist
 - Stability caused by path dependencies / sunk costs
 - Change and stability caused by change agents and shock events

Thank you